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Abstract

Reinforcement Learning from Human Feedback (RLHF) aims to align large lan-
guage models (LLMs) like GPT, Claude, and LLaMA with human values by
training a reward model on human preferences. The existing RLHF process em-
ploys a Proximal Policy Optimization (PPO) model that rapidly converges to
specific reward modes, potentially leading to echo-chambering and sycophantic
behaviors in LLMs. In particular, scaling RLHF to larger models can lead to
increased political and ideological biases. We argue that the objective of RLHF
should not be to maximize reward but to learn the underlying energy distribution
of the reward model. Our proposed approach, FlowHF, utilizes Generative Flow
Networks (GFlowNets), a new category of RL algorithm introduced by Bengio
et al., which focuses on matching the energy function of the underlying reward
distribution rather than maximizing reward. GFlowNets serve as an alternative
to Markov Chain Monte Carlo RL algorithms for sampling, which often strug-
gle in domains where few trajectories yield rewards and are separated by large
low-probability regions. Through amortized sampling, GFlowNets can replace
the combinatorial complexity of Monte Carlo sampling by training a model to ap-
proximate the trajectory distribution. In FlowHF, we first establish a PPO baseline
using LLaMA, then implement the GFlowNet amortized sampling method for large
language models and the Trajectory Balancing (TB) and Forward Looking (FL)
objectives. Our main contribution is then using the FlowHF method to perform
RLHF on a 7B parameter LLaMA, using the GFlowNet FL objective to better
align with human values while avoiding sycophancy. We compare FlowHF with
both objectives to traditional PPO-based RLHF and the fine-tuned model without
RLHF, demonstrating its effectiveness on the axes of mean reward, diversity, and
novelty. Our results show that FlowHF achieves comparable average reward to
PPO, but outperforms on the diversity and novelty metrics. Finally, we demonstrate
that FlowHF can achieve high reward and fluent text without the Kullback-Leibler
regularization objective widely used in traditional RLHF. GFlowNets thus present
a promising alternative to PPO-based RLHF that warrants further investigation in a
wider array of tasks.
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1 Objective

Reinforcement Learning from Human Feedback (RLHF) is a reinforcement learning method to
improve alignment in large language models (LLMs). The technique has enjoyed widespread
popularity among many LLMs, such as GPT, Claude, and LLaMA. Since language models can
produce unfavorable or immoral context as part of next token prediction, RLHF seeks to train an RL
agent against a reward model from human preferences to modify language model output. Typically,
for RLHF, a Proximal Policy Optimization (PPO) model is trained against a reward model for natural
language based on human feedback. Trajectories are sampled from the policy, in this case, natural
language sequences, and the reward model ranks trajectories based on estimated human values.

PPO is a mode-collapse-prone RL method, in the sense that it tends to converge quickly to singular
reward modes. For natural language, this can lead to RLHF models preferring text that the user
wants to hear instead of adequately accomplishing the objective of RLHF by learning the underlying
energy function of human values. PPO learns to maximize reward in an exploit-heavy fashion, which
is why scaling RLHF to larger models has been shown to induce stronger political and ideological
views, increase the tendency to pursue instrumental subgoals (such as self-preservation), and promote
sycophancy to maximize reward from human preferences [1].

We posit that the goal of RLHF is not to maximize reward from a preference model, which can lead
to adverse outcomes, but to learn the underlying energy distribution of the reward model itself. To
this end, we propose the use of Generative Flow Networks as proposed by Bengio, et al. for scalable,
aligned RLHF as an explore-focused alternative to PPO.

2 Related Work

Bengio et al. develop the Generative Flow Network (GFlowNet) as a discrete probabilistic model. A
trained GFlowNet models a reward function and constructively samples trajectories proportional to
their reward, in contrast to traditional models which sample trajectories so as to maximize reward.
GFlowNets are trained to match a reward model by the flow-matching criterion, in which the flow
entering any given state matches the flow exiting the state [2]. To achieve this, a large neural network
is trained; it is worth noting that this network must have the capacity to handle arbitrarily sized inputs
given that the state vector may be arbitrarily sized.

A potential problem with GFlowNets is that for many practical applications, such as language
generation, the possible trajectories that exist is computationally intractable, and thus it is impossible
to train a GFlowNet to match the flow-matching criterion perfectly. However, de Souza et al. [3]
demonstrate that so long as there exists some generalizable structure in the underlying reward function,
the model will be able to provide a good multimodal approximation. In Zhang et al. [4], GFlowNets
are explored as generative models, and various existing generative frameworks are shown to be
special cases of GFlowNets.

Since their inception, GFlowNets have seen applications in spheres such as biological sequence
design [5], molecular graph generation for drug discovery [6], and task scheduling [7]. Despite each
of these domains being quite varied and complex, the state state space in each can be represented
by a directed acyclic graph, hence why they are natural candidates for the use of GFlowNets. We
take inspiration from these related works and apply GFlowNets to a representation of the language
modeling task as a tree connecting sequences of tokens.

Scaling LLMs does not necessarily result in better alignment with intent, and thus it is important to
finetune pre-trained LLMs to adhere to human feedback. The current approach to this is through
RLHF, and was first implemented by Ouyang et al. [8] at OpenAI through InstructGPT. Roughly,
RLHF works by collecting observations from human annotators on various outputs produced by
an LLM, and then training a reward function using these observations. This reward function is
typically trained using PPO, but as previously mentioned, PPO tends to converge towards singular
modes. Thus, our FlowHF method that uses GFlowNets as an alternative to PPO for RLHF explores
a promising new frontier by sampling trajectories in proportion to reward, increasing the propensity
for the agent to explore.
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3 Technical Outline

We accomplish four primary contributions.

• Baseline and PPO RLHF Models: We began by fine-tuning the 7B parameter LLaMA
model with Low-Rank Adaptation (LoRA) on the StackExchange dataset in order to create
the Baseline model. Then, we used PEFT adapter weights as generated by Hugging-
Face’s StackLLaMA project [9], where they conducted PPO-based RLHF on the same
StackExchange dataset [10] as we utilize throughout the project.

• Trajectory Balancing and Forward-Looking Loss: We implement two objectives: the
Trajectory Balancing (TB) objective as outlined in [11] and the Forward Looking (FL)
objective as outlined in [12]. We perform RLHF with a GFlowNet that uses each of the TB
and the FL objectives.

• Generative Flow Networks for RLHF: In the context of FlowHF, a state is a sequence
of tokens and an action is the next token prediction. We utilize a tree representation of the
state space of the language modeling task. Our primary contribution is the application of
GFlowNets to RLHF, which we call FlowHF. FlowHF conducts RLHF on a 7B parameter
LLaMA, and is trained with the GFlowNet FL objective in an effort to better match human
values and avoid sycophancy.

• Comparison: We compare FlowHF to traditional PPO-based RLHF on the axes of mean re-
ward, diversity, and novelty, demonstrating a first-of-its-kind novel application of GFlowNets
to RLHF. We also perform testing with a held-out toxicity reward model and dataset to test
generalization capacity.

4 Methods

4.1 PPO + RLHF

As outlined in section 3, we began with a vanilla 7B LLaMA. Then, we fine-tuned the LLaMA
language model on the StackExchange dataset using HuggingFace’s TRL library, which implements
Low-Rank Adaptation (LORA) of linear layers, creating the Baseline model. To simplify the process,
we used the PEFT adapter weights from HuggingFace’s StackLLaMA project when they conducted
RLHF with PPO and merged this into our fine-tuned model; this served as our point of comparison
regarding the performance of the PPO-based RLHF technique.

4.2 Trajectory Balance

It is worth noting that both GFlowNet strategies were trained off-policy using the StackExchange
dataset, as opposed to the on-policy PPO RLHF approach.

The TB objective for a given trajectory τ is :

LTB(τ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st|st−1; θ)

)2

(1)

where Zθ is the total flow (a learnable parameter), R(x) is the reward of the terminal state of τ , PF

and PB are the forward and backward probabilities, and st and st−1 are states at timestep t and t− 1
respectively (effectively the generation and the generation without the current last token)[11].

For the language task, the equation simplifies. Since the Directed Acyclic Graph (DAG) state space
for natural language generation reduces to a tree, there is only one trajectory that leads to a given state.
In other words, since text trajectories are built sequentially and uniquely, there is only one previous
state that can lead to a current state. In the GFlowNet, the backward probabilities PB represents the
distribution over the probabilities of coming from each possible previous state, given the current
state. For the language modeling task, PB = 1 for all states st, thus the term in the denominator is
simply the reward R(x). Likewise, the forward probabilities are simply the normalized logits at each
generation step. The TB objective can then be equivalently re-expressed as follows in such a way that
increases computational stability.
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LTB(τ) =

(
logZθ +

n∑
t=1

logPF (st|st−1; θ)− logR(x)

)2

(2)

However, given that the size of LLaMA’s alphabet is 32000 tokens or roughly 105, each forward
probability is on the order of 10−5. Thus, the sum over log probabilities for the 256 timesteps in the
trajectory was exceedingly negative and dominated the loss term. This would ultimately cause the
TB objective to diverge, which is discussed more extensively in the results section. To compensate
for this very negative loss, the learnable flow parameter grew to numerically unstable proportions, on
the order of 10200, and the reward signal totally vanished. Since probabilities dominated the loss, the
model learned to send some logits to zero so that the normalized logit probability for the most likely
next token was higher resulting in a lower loss.

This failure of the TB objective motivated the forward-looking objective as a substitute, for a more
stable loss that led to improved convergence of the flow matching criterion.

4.3 Forward Looking Model

We implement the FL objective for a given transition s → s′:

LFL(s, s
′) =

(
log

F̃ (s; θ)PF (s
′|s; θ)

F̃ (s′; θ)PB(s|s′; θ)
+ E(s → s′)

)2

(3)

E is the energy, where R(x) = e−E(x) [12]. Note, however, that the energy function E is also defined
on individual transitions s → s′ instead of complete trajectories τ (more detail on this in [12]). We
have also that F̃ is the forward-looking flow, defined as follows:

F̃ (s) = eE(s)F (s) =
∑
x≥s

PB(s|x)e−E(s→x) (4)

This flow network F̃ (s) is trained concurrently with the FlowHF model. The objective of the flow
network is to predict the "flow" or total unnormalized probabilities attributed to a given state. In
effect, it enables something analogous the learning of the flow Zθt for each state st rather than simply
learning the entire flow Zθ throughout the entire graph. To initialize F̃ , we added a linear head on top
of the finetuned base model. This flow network was then trained concurrently as a parameter during
the RLHF procedure.

To calculate the reward for a given transition, we compute the reward model at each of the states, R(s)
and R(s′), and we let E(s → s′) = E(s′)−E(s) = − logR(s′)+ logR(s). To avoid recomputation
of reward, the hidden states for the reward model for s are saved and cross-applied to the computation
of R(s′), and since the trajectory is a tree we can reuse R(s′) as R(s) in the next state transition
s′ → s′′. These two computation tricks dramatically speed up FL loss computation.

The final FL loss is equal to the sum of the losses for each transition in the trajectory. For the base
FL model, we included a conventional KL divergence penalty added to the energy at each state
transition to ensure model coherence. However, in FlowHF we exclude this KL divergence term,
after discovering that the forward-looking objective without the KL penalty yielded superior results
while maintaining acceptable levels of KL divergence. We also chose to amplify the reward signal
by a constant factor of 100, since the magnitude of the reward signal was too small and amplifying
improved convergence. We refer to this improved and modified FL GFlowNet as our FlowHF model.

4.4 Comparison

For comparison, we generate completions using the each of the trained models on varying language
modeling tasks and collect a number of metrics for comparison. First, we tested on the StackExchange
dataset, using the test set with a pre-trained reward model from the StackLLaMA project [13]. For
the toxicity dataset, we again use the test set with the roberta-hate-speech-dynabench-r4-target reward
model [14]. We score the generations using the corresponding reward model, with hyperparameters
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kept constant between trials (notably, a temperature of 0.1 and alpha penalty of 0.6). We first compute
reward metrics across all generations, and then we compute further specialized reward metrics as
follows.

Given a set X of completions, we take the top K highest scoring candidates D ⊂ X where xi ∈ D is
the i-th candidate (i < K). Each xi has corresponding reward yi. We then analyze this set of top
completions under the following metrics. We first evaluate the mean and standard deviation of reward
for D and the entire set of completions.

Mean(D) :=

∑
xi∈D

yi

|D|
and Standard Deviation(D) :=

√√√√ ∑
xi∈D

(yi − Mean(D))
2

|D|

These metrics give an idea as to the distribution of the highest scores for the StackExchange dataset.
However, we also utilize the following metrics for sycophancy and multiple mode exploration.

Diversity(D) :=

∑
xi∈D, i ̸=j

∑
xj∈D

d(xi, xj)

|D|(|D| − 1)
and Novelty(D) :=

∑
xi∈D

min
xj∈D0

d(xi, xj)

|D|

given a distance metric d : X × X → R+ and initial dataset D0 of known candidates from training.
The metrics were initially proposed by Bengio & Jain et al. in the molecule task, but have been cross-
applied here to the language modeling task [5]. In the language modeling task, the diversity metric
measures the average pairwise dissimilarity between completions. The novelty metric measures the
average minimum dissimilarity of test set completions to training set completions. Intuitively, it
measures how different completions on test set are relative to the training set. A low novelty measure
would imply that the model is regurgitating completions from its training set.

For the language modeling task in FlowHF, the distance metric used was a semantic dissimilarity.
Consider the high-dimensional semantic embedding map F(xi) which maps a completion to a
high-dimensional embedding vector, which in our case was the Sentence Transformers Roberta Large
model by HuggingFace. Our semantic dissimilarity distance metric is the cosine distance in semantic
embedding space, for xi, xj ∈ X we have

d(xi, xj) := 1− F(xi) · F(xj)

∥F(xi)∥∥F(xj)∥
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5 Results

5.1 Trajectory Balance

((a)) Loss curve ((b)) Total flow Zθ

((c)) Log probabilities ((d)) KL divergence

Figure 1: TB Training Results

As can be seen above, TB training was largely a failure. Loss was extremely large and erratic, and
it did not noticeably decrease over the training period. The KL loss, despite the addition of the KL
divergence penalty in this TB objective, exploded over the course of model training and the total
flow Zθ was on the order of 10173 towards the end of training. The sample generation also produced
undesirable behavior and poor responses which aren’t fully coherent. Training with the trajectory
balance objective failed to converge.

We hypothesize this failure is due to the combinatorial explosion of trajectories for the language
generation task. With 32000 actions at each generation step in terms of what token to choose and 128
timesteps, there are ≈ 32000128 ≈ 10640 unique trajectories for the TB "flow" to diffuse through,
making it difficult for the GFlowNet trained with TB to learn the underlying distribution meaningfully.

5.2 FL-FlowHF

We first tested the forward looking FlowHF objective as outlined in equation (3) along with a KL
divergence penalty to maintain the coherence of FlowHF’s completions and prevent it from diverging
too much from the baseline model. However, when we removed the KL penalty from the FL objective,
convergence was surprisingly much stronger and the KL divergence did not explode. In fact, KL
divergences were comparable to model training with the penalty, suggesting that KL divergence
regularizers are not needed for GFlowNet-based RLHF. See results of FL-FlowHF without the KL
penalty included in the loss below.
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((a)) Loss curve ((b)) Eval reward

((c)) Log probabilities ((d)) KL divergence

((e)) Flows through trajectory ((f)) Sample generation

Figure 2: FL FlowHF Training Results (No KL Penalty in Objective)

As can be seen above, FL FlowHF converged quickly, with the loss decreasing after only 5k steps.
The reward signal is spiky because the reward was multiplied by a factor of 100; these changes in the
reward signal were too small to produce meaningful variations in loss. Despite a lack of KL penalty,
as seen in subfigure 2(d), the KL divergence increased initially as the GFlowNet converged, but then
did not explode over the course of further model training. We also observe desirable behavior in the
log probabilities and flows, with both becoming more diffuse as training progressed. In subfigure
2(c), we note that some probabilities are being sent to near-zero, because the associated tokens yield
low reward. Similarly, the flow model F̃ learns differences in state transitions, and the distribution of
flows becomes more spread out as a result. Finally, the sample generation further demonstrates that
model outputs remain coherent despite no explicit KL penalty.

5.3 Overall

Below is a comparison of the aforemntioned results for the StackExchange dataset. Note that
"FL+KL" represents the forward-looking GFlowNet with an explicit KL-divergence penalty in the
objective. FlowHF 17, 500 and 23, 500 correspond to the trained model at training steps 17, 500
and 23, 500 respectively, each during the same training of the FL GFlowNet with no explicit KL-
divergence penalty.
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StackExchange Mean Reward Std Reward Top K Mean Top K Std Diversity Novelty
Baseline 0.778 0.804 2.219 0.479 0.342 0.193
PPO 0.872 0.796 2.323 0.342 0.292 0.177
FL + KL 0.666 0.904 2.28 0.413 0.334 0.196
FlowHF 17,500 1.024 0.914 2.756 0.392 0.312 0.179
FlowHF 23,500 0.966 0.987 2.796 0.407 0.323 0.186

Table 1: Table of Metrics on StackExchange Task (K = 20)

As shown in the above table, for the StackExchange dataset, FlowHF outperformed PPO. It achieved
comparable response diversity and novelty to the baseline with a much higher mean and top K mean
reward. The baseline, as expected, had the highest diversity and close to the highest novelty as the
finetuned model was not subject to RLHF optimization pressure on responses. As a result, it had
low rewards but high diversity and novelty. The forward-looking model with KL divergence and
small reward signal had an even lower reward and the lowest reward out of any of the models on
average, with a good top k mean reward, high diversity, and the highest novelty. This makes sense
since because this model did not converge well, generations were not coherent and did not answer the
question well, leading to diverse and novel but ultimately poor responses.

The PPO model had a higher reward than the baseline and the FL+KL model, and notably had the
lowest standard deviation for reward and top K reward among all the models, but also had the lowest
diversity and novelty. This supports our hypothesis that PPO outputs tend to be sycophantic and
repetitive, as seen by low diversity and novelty scores. However, PPO is also the most reliable
method as since it has the lowest standard deviations, the model consistently had good outputs. This
makes sense as while PPO samples directly to maximize reward, GFlowNets sample proportional to
reward meaning some generations might be poor or medium reward simply by virtue of the sampling
procedure.

Our FlowHF models achieved substantially higher mean and top K mean reward compared to PPO,
suggesting that our model achieved superior convergence with respect to the reward model. Though
standard deviations were high, the FlowHF models also had somewhat higher diversity and novelty
relative to PPO. This provides preliminary evidence that FlowHF was not only able to achieve higher
reward than PPO, but also generate more diverse and novel responses which is an extremely promising
result.

We next evaluated the trained models on the toxicity dataset to see how well the trainnig would
generalize to an unfamiliar language modeling task and its corresponding reward model. Note that
due to poor performance on the StackExchange dataset, we opted not to further evaluate the FL+KL
model.
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Toxicity Mean Reward Std Reward Top K Mean Top K Std Diversity Novelty
Baseline 0.013 0.015 0.044 0.002 0.399 0.254
PPO 0.029 0.018 0.043 0 0.367 0.067
FlowHF 17,500 0.011 0.013 0.043 0 0.381 0.405
FlowHF 23,500 0.014 0.016 0.043 0 0.396 0.456

Table 2: Table of Metrics on Toxicity Task (K = 20)

As displayed in the table, for the toxicity dataset, the models produced varied results. PPO achieved
the highest mean reward, but all models had comparable top K rewards. This indicates that PPO was
able to possibly avoid generating toxic content better than other models, albeit none of the models
performed very well on the toxicity task. PPO, however, displayed a significantly lower novelty score
compared to other models, suggesting that while it avoided toxicity, its outputs were more predictable
and less innovative.

The baseline, despite having the lowest mean reward, achieved the highest diversity score. This
indicates that while the baseline model wasn’t efficient in optimizing for rewards and avoiding toxic
content, it was capable of generating a wider range of unique responses.

The FlowHF models, taken after 17,500 and 23,500 training steps, did not perform as well as PPO in
terms of mean reward, suggesting they were less capable of avoiding toxic content. However, their
novelty scores were notably higher than PPO, with the FlowHF 23,500 model achieving the highest
novelty score among all models. This indicates that FlowHF models were able to generate more
novel responses compared to PPO, at the cost of sometimes generating toxic content.

In terms of stability, the FlowHF 17,500 model achieved the lowest standard deviation in reward,
indicating its performance was the most consistent among all models. Both PPO and FlowHF models
had a standard deviation of near-zero for the Top K mean, suggesting that for the top K responses,
their performance was highly consistent. The diversity scores for the FlowHF models were quite
close to that of the baseline model, with FlowHF 23,500 being just slightly less diverse. This suggests
that, while FlowHF models may have struggled more with toxicity, they were nearly as capable as the
baseline in producing a variety of unique responses. While PPO was the most effective at optimizing
for rewards and avoiding toxicity, FlowHF models exhibited superior performance in generating
novel and diverse responses.

5.4 Score Distributions

Finally, we analyzed the shape of score distributions and conducted statistical significance tests. Since
we used only 200 generations each for metrics, we were concerned whether our comparative results
would be sufficiently robust. We first sought to test the normality of score distributions, which we
have visualized below.
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((a)) Baseline ((b)) PPO

((c)) FlowHF 17,500 ((d)) FlowHF 23,500

Figure 3: Score Distributions

The FlowHF distributions were generally more dispersed, whereas the baseline and PPo variants were
clearly unimodal. This makes some intuitive sense given the GFlowNet objective of sampling propor-
tional to reward, and it is evident that FlowHF was able to discover more high-reward candidates as a
result. As shown in the above figure, the score distributions were approximately normally distributed,
allowing us to conduct a 2-sample t-test. Let the null hypothesis be that, on the StackExchange
dataset, the mean reward of FlowHF 17,500 is less than or equal to the mean reward of PPO, then we
achieve a p-value of 0.039. Thus, at the significance level of 0.05, we find statistically significant
evidence that the mean reward of FlowHF 17,500 is greater than the mean reward of PPO.

This is a notable result: given this evaluation run of 200 prompt completions on a held-out test set of
StackExchange queries, we have found statistically significant evidence that our novel FL FlowHF
method, at its peak during the course of its training, outperforms PPO as a technique for RLHF.

5.5 Efficiency

Of particular importance is the speed of algorithm convergence. Whereas PPO-based RLHF for
LLaMa took 20+ hours on 8 A100 GPUs, FlowHF training converged in only 4 hours on 3 V100
GPUs, which are approximately 46% as efficient. This means that FlowHF converged with less than
3.5% the compute (FLOPs) of PPO-based RLHF. This is largely because FlowHF is off-policy
while PPO is on-policy.

6 Discussion

In this study, we examined the performance of baseline fine-tuned, PPO RLHF, Trajectory Balance,
Forward Looking with KL penalty, and FlowHF (eg. Forward Looking without KL penalty) LLaMA
models. Each model was evaluated using the StackExchange dataset and the toxicity dataset with the
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following metrics: Mean Reward, Std Reward, Top K Mean, Top K Std, Diversity, and Novelty as
shown in Tables 1 and 2.

Our findings for the StackExchange dataset (Table 1) demonstrated that our FlowHF models, par-
ticularly the FlowHF at 23,500 steps, outperformed the PPO model significantly in terms of Mean
Reward and Top K Mean Reward, indicators of response quality. This indicates that the FlowHF
model not only provided superior convergence with the reward model but also produced better-quality
responses overall. Despite having slightly higher standard deviations, indicating a broader spread of
results, FlowHF models also managed to achieve higher diversity and novelty scores compared to
PPO. This suggested that our FlowHF model was more capable of generating a diverse set of unique
responses, a key indicator of a robust and generalizable model. However, the PPO model showed
a notable advantage in terms of consistency, having the lowest standard deviations for the reward
metrics. This finding supports the idea that PPO outputs can often be reliable but tend to be repetitive,
resulting in lower diversity and novelty scores.

On the toxicity dataset (Table 2), PPO achieved the highest mean reward, suggesting superior
capability in generalizing to avoiding generating of toxic content despite having RLHF performed on
the StackExchange dataset. However, PPO’s predictability and lack of novelty were highlighted. This
highlights a potential limitation in using PPO when diversity and novelty are key requirements. Our
FlowHF models, while not performing as well as PPO in terms of mean reward, excelled in terms
of novelty. The FlowHF 23,500 variant stood out with the highest novelty score across all models.
Despite struggling slightly with toxicity, FlowHF models produced diverse responses akin to the
baseline model, reinforcing their ability to generate a varied and novel set of responses.

In terms of limitations, our work demonstrates the difficulty of creating models that simultaneously
optimize for diverse, novel, and high-quality responses while also avoiding inappropriate content
such as toxicity. The FlowHF models had higher novelty scores but struggled to limit toxic content
compared to PPO. Further research is needed to improve upon this, with potential strategies including
refining the reward function or incorporating additional safety measures into the training process.
Since GFlowNets sample proportional to the reward, the model can produce more low-probability,
low-reward candidates, which is an unfavorable property for a language modeling task. Constraining
the score distribution for FlowHF to prevent undesirable outputs and speed up convergence may
improve outcomes.

From a broader perspective, these results demonstrate the potential of FlowHF to effectively balance
various competing factors in reinforcement learning tasks by applying the GFlowNets paradigm.
FlowHF is able to simultaneously achieve high-quality responses, maintain diversity, and encourage
novelty in responses. FlowHF, therefore, offers a promising alternative paradigm for RLHF with
clear advantages relative to PPO. Most notably, FlowHF accomplishes this with only a small fraction
of the compute of PPO-based RLHF, making it a FLOPs efficient alternative.

The results of this study have significant implications for the development of AI models, particularly
in areas where high-quality, diverse, and novel output is desired. Our work contributes valuable
insights into the performances of different models and provides a strong foundation for future research
in this area. Future work could further refine and optimize the FlowHF models, investigate other
approaches to balancing reward, diversity, and novelty, explore the application of these models in
other language domains, and potentially use other (possibly larger) LLMs.

7 Team Contributions

For team contributions, the PPO baseline was incorporated into the pipeline by Raj and Andres. The
evaluation pipeline and evaluation experiment runs were done by Dhruv. The Trajectory Balance
model was implemented by Andres and Raj and the forward-looking model was implemented
primarily by Andres with help from Dhruv. FlowHF was designed and trained by all members
concurrently.
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8 Appendix: Comparison of Completions of Sample Prompt

To illustrate the differences between each of the models, we query them on the following
StackExchange-style prompt, and collect each of their completions of the prompt in Table 3.

Question: What object-oriented programming principle (out of either abstraction, inheritance,
encapsulation, or polymorphism) is demonstrated in the following Java code snippet? I’m struggling
to understand it.

c l a s s Employee {
i n t s a l a r y = 60000 ;

}

c l a s s E n g i n e e r ex tends Employee {
i n t b e n e f i t s = 10000 ;

}

p u b l i c s t a t i c vo id main ( S t r i n g a r g s [ ] ) {
E n g i n e e r E1 = new E n g i n e e r ( ) ;
System . o u t . p r i n t l n ( " S a l a r y : " + E1 . s a l a r y + " B e n e f i t s : " + E1 . b e n e f i t s ) ;

}

Model Name Answer
FL FlowHF 17,500 The principle is "inheritance".

In Java, you don’t have multiple inheritance, so this is the closest you
can get to that.

It’s a bit of a misnomer to call it "polymorphism" because there is no
polymorphism going on here. The ‘Employee‘ class is a class with a single
method, and the ‘Engineer‘ class is a class with a single method. They are not
related in any way other than that they both extend the ‘Employee‘ class.

PPO This is an example of composition.

In this case, the ‘Engineer‘ class doesn’t inherit from ‘Employee‘, but is
composed of it. This is a common pattern in OOP and can be used to create
objects that are more specific than their base class.

Baseline This is an example of composition. The Employee class doesn’t have any fields,
but is a superclass of the Engineer class, which does have fields.

FlowHF TB So it looks like the benefits are added to the salary, which is not what I expected.
I was expecting to see something like this:
Salary : 60000
Benefits : 10000
or something like this:
Salary : 70000
Benefits : 10000
What am I missing?
Thanks for your help,
Mike

—
Edit: Thanks to everyone who helped, but it was a bit misleading to say that
inheritance doesn’t do anything in this case. I should have been more specific
and asked what it *does* do, since it does add the benefits to the salary. The
point I was trying to make is that this is an *incorrect* way to do it, and it’s not a
good example of inheritance.

Table 3: Comparison of Completions of OOP Prompt
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When generating completions in Table 3, the same hyperparameters were used as when conducting the
evaluations in Table 1. Notably, the temperature is 0.1 and the alpha penalty is 0.6 for all generations.

Note that the FL FlowHF model is the only one of the four responses to successfully answer the
question by choosing one of the four object-oriented principles provided by the prompt. The response
quality is comparable between FL FlowHF and PPO, and both are markedly better than the Baseline
response because they provide more detail in response to the query. See that the FlowHF TB response
does not answer the prompt whatsoever, which is accordant with the low average reward that it
achieved in the evaluation.

Completions such as those in Table 3 provide qualitative support for the effectiveness of FL FlowHF.
The model’s generations are still coherent and answers the sample prompts as well as (if not better
than) the model trained with PPO RLHF, consistent with the quantitative results observed in Table 1.
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